Molecular Recognition of Mono- and Di-saccharides by Phenylboronic Acids in Solvent Extraction and as a Monolayer

Seiji Shinkai,* Kazuhiko Tsukagoshi, Yuichi Ishikawa and Toyoki Kunitake

Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan

m- and *p*-Hexadecyloxyphenylboronic acids (*m*-1 and *p*-1, respectively) selectively extract saccharides; the monolayer of *m*-1 at the air–water interface selectively responds to these saccharides, the order of the change in π -*A* isotherms being similar to that of the extractability.

The development of receptor molecules that can precisely recognize and specifically bind guest molecules has been the focus of much recent attention.^{1,2} In the design of such artificial receptors hydrogen-bonding interactions play a central role.^{3–7} However, more precise molecular recognition may be achieved through the formation of covalent bonds rather than through non-covalent interactions. In fact, Wulff *et al.*^{8,9} demonstrated that certain saccharide molecules are precisely recognized by phenylboronic acids immobilized in polymer matrices. In this paper, we report molecular recognition of mono- and di-saccharides by *m*- and *p*-hexadecyloxy-phenylboronic acids (*m*-1 and *p*-1, respectively) in solvent extraction and monolayer (at the air–water interface) systems.¹⁰

The treatment of m- and p-hexadecyloxybromobenzenes with trimethyl borate in the presence of butyllithium yielded dimethyl esters of m- and p-hexadecyloxyphenylboronate, respectively. The acid hydrolysis of these products resulted in m-1 and p-1 in 35 and 23% yield, respectively.[†] The products

[†] Compound *m*-1: m.p. 81–82 °C; ν_{max} (KBr) 1240 (ArOC) cm⁻¹; δ_H (CDCl₃, 25 °C) 0.95–2.01 (31H, m, C₁₅H₃₁), 4.01 (2H, t, OCH₂), 7.05–7.90 (4H, m, ArH). The IR spectrum and elemental analysis indicated that the product we recovered by preparative TLC [silica gel, chloroform-hexane (4:1 v/v), $R_f = 0.20$] is boronic acid anhydride (C₁₆H₃₃O-*p*-C₆H₄-BO). When treated with aqueous solution, this compound was rapidly hydrolysed to C₁₆H₃₃O-*p*-C₆H₄-B(OH)₂. Compound *p*-1: m.p. 78–81 °C; ν_{max} (KBr) 3100–3600 (OH) and 1240 (ArOC) cm⁻¹; δ_H (CDCl₃, 25 °C) 1.10–1.70 (31H, m, C₁₅H₃₁), 3.93 (2H, t, OCH₂), 6.99 and 7.67 [4H, d each (*J* 9.0 Hz), ArH].

Satisfactory elemental analyses were obtained for *m*-1 and *p*-1.

were identified on the basis of IR and NMR spectral evidence and elemental analysis.[†] Solvent extraction of saccharides was carried out at 25 °C under three different conditions: solidliquid (CDCl₃) extraction (method A), extraction from neutral aqueous solution to the organic phase (CDCl₃) (method B) and extraction from alkaline aqueous solution to the organic phase (CDCl₃) (method C). The equilibria were attained after about 6 h. The extractability was determined by measuring the concentration of extracted saccharides in the organic phase with ¹H NMR spectroscopy. The results are summarized in Table 1.

Examination of Table 1 reveals that the order of the extractability for four saccharides tested herein is, regardless of the extraction method, D-fructose > D-glucose > D-maltose > D-saccharose. It is known that phenylboronic acid forms a five-membered ring with a *cis*-1,2-diol group.¹² In addition, it can form a six-membered ring with a *trans*-CH(OH)-CH(CH₂OH)-diol group although the stability is inferior to that of the five-membered ring.^{8,9,11} The order of the

Fig. 1 Assignment of (a) $(p-1)_2 \cdot \beta$ -D-fructose and (b) $(p-1)_2 \cdot \alpha$ -D-glucose complexes. The numbers indicate the chemical shifts (δ in CDCl₃ at 25 °C). The splitting patterns are shown in parentheses. The splitting pattern for the OH peak in the $(p-1)_2 \cdot \beta$ -D-fructose complex was determined in CDCl₃-CD₃CN (1:1) solution (δ 3.09: marked with *) because it could not be observed clearly in CDCl₃ solution (δ 1.75–1.85) because of overlapping with the C₁₆H₃₃ protons.

Fig. 2 Surface pressure–area $(\pi$ –A) isotherms of monolayer m-1. The saccharide concentration in the subphase (pH 10.0 with 0.20 mol dm⁻³ carbonate buffer) is 10 mmol dm⁻³. The π –A curves were obtained at 20 ± 0.1 °C and a compression rate 0.4 mm s⁻¹ on a 478 × 150 mm trough with a computer-controlled film balance (San-esu Keisoku Co., model FSD-20). (a) None, (b) D-fructose, (c) D-glucose, (d) D-maltose, (e) D-saccharose.

Fig. 3 Optical microscopic morphologies of *m*-1 (containing 0.25 mol% of DPPE Rhodamine B) at A = 0.40 nm²: the subphase is (a) buffer solution, (b) 10 mmol dm⁻³ p-saccharose and (c) 10 mmol dm⁻³ p-fructose. The size of the picture is 540 µm (from the left edge to the right edge).

Table 1 Solvent extraction of saccharides

Boronic acid	Saccharide	Extractability (%)		
		Method A ^a	Method B ^b	Method C ^c
<i>m</i> -1	D-Fructose D-Glucose D-Maltose	98^d 1^d 0 0	29 ^d 0 0	71^d 14 12 0
p- 1	D-Fructose D-Glucose D-Maltose D-Saccharose	98^{d} 57^{d} 40^{d} 0	43 ^d 0 0 0	74 ^{<i>d</i>} 20 2 0

^a Solid-liquid extraction: 0.10 g saccharide in 3 ml CDCl₃ containing 1.00×10^{-3} mol dm⁻³ 1. ^b Aqueous phase (5 ml), 0.10 mol dm⁻³ saccharide; organic phase (CDCl₃ 2 ml), 1.00×10^{-3} mol dm⁻³ 1. ^c Aqueous phase (5 ml, pH 10.0 with 0.20 mol dm⁻³ carbonate buffer), 0.10 mol dm⁻³ saccharide; organic phase (CDCl₃ 2 ml), 1.00×10^{-3} mol dm⁻³ 1. ^d The stoichiometry of extracted species was confirmed to be 1: saccharide = 2:1.

extractability is rationalized on the basis of these ring-formation modes.[‡]

In ¹H NMR measurements of the CDCl₃ solution, the chemical shifts of the aromatic protons in complexed *m*-1 and *p*-1 are different from those of 'free' *m*-1 and *p*-1 (for the aromatic protons in *p*-1, for example, $\delta 6.99$ and 7.67 for free *p*-1 and $\delta 6.90$, 6.93, 7.74 and 7.79 for the *p*-1·D-fructose complex). One can thus estimate the stoichiometry for the complexes: they always showed 1:saccharide = 2:1. To obtain further insights into the complexation mode, we examined the ¹H NMR spectrum of *p*-1·D-fructose and *p*-1·D-glucose complexes in detail. By using the decoupling method, Karplus rule and two-dimensional (COSY) method,¹² we could assign all peaks as shown in Fig. 1. Clearly, *p*-1 forms 2:1 complexes with β -D-fructose and α -D-glucose. The *J*_{HH} between 1-H and 2-H in the *p*-1·D-glucose complex was 4.0 Hz. This value is in line with the *gauche* conformation required for α -D-glucose.

Subsequently, we tested if *m*-1 and *p*-1 form stable monolayers at the air-water interface and if they selectively respond to saccharides dissolved in the aqueous phase. Compound *p*-1 did not form a stable monolayer on water (pH 6.1-11.3). This was confirmed by (*i*) the lack of the reproducibility, (*ii*) the production of layered white crystals at the interface and (*iii*) the formation of the huge crystal phase [detected through the observation of a *p*-1-DPPE Rhodamine B§ (0.25 mol%) mixed system with an optical microscope]. In contrast, *m*-1 gave a stable monolayer (Fig. 2). The pressurearea (π -*A*) isotherm was reproducible and the monolayer (containing 0.25 mol% of DPPE Rhodamine B: the π -*A* isotherm was not affected by the addition of DPPE Rhodamine B) was observed as a well-dispersed island structure [Fig. 3(*a*)]. The π -*A* isotherm was affected by the addition of

[‡] The ¹H NMR measurements established that D-fructose and D-glucose are extracted by *p*-1 as β -anomer and α -anomer, respectively (see Fig. 1).

DPPE Rhodamine B used for the optical microscopic observation.

Fig. 4 Dependence of π at A = 0.40 nm² on the saccharide concentration (*b*-*e* as in Fig. 2)

saccharides in the subphase. As shown in Fig. 2, a plateau at around A 0.40 nm² becomes less apparent. Thus, we plotted π at A 0.40 nm² against the saccharide concentration (Fig. 4). It is seen from Fig. 4 that the sensitivity of π to saccharide concentration is exactly equal to that of the extractability. The optical microscopic observation indicated that the structure of the monolayer is scarcely affected in the presence of D-saccharose [Fig. 3(b)], whereas in the presence of D-fructose the domain structure of *m*-1 disappears and a homogeneous,

Although mechanistic differences may exist between the solvent extraction and the monolayer behaviour, both of these results suggest that the present system acts as a new sensory system for sugar molecules.¹³

Received, 25th March 1991; Com. 1/01418H

References

- 1 A. R. Fersht, Trends Biochem. Sci., 1987, 12, 301.
- 2 D. H. Turner, N. Sugimoto, R. Hierzek and S. D. Dreiker, J. Am. Chem. Soc., 1987, 109, 3783 and references cited therein.
- 3 J. Rebek, Jr., Angew. Chem., Int. Ed. Eng., 1990, 29, 245 and references cited therein.
- 4 S. Goswami and A. D. Hamilton, J. Am. Chem. Soc., 1989, 111, 3425 and references cited therein.
- 5 T. R. Kelly, C. Zhao and G. J. Bridger, J. Am. Chem. Soc., 1989, 111, 3744.
- 6 Y. Aoyama, Y. Tanaka, H. Toi and H. Ogoshi, J. Am. Chem. Soc., 1988, 110, 634.
- 7 K. Kano, K. Yoshiyasu and S. Hashimoto, J. Chem. Soc., Chem. Commun., 1988, 801.
- 8 G. Wulff, B. Heide and G. Helfmeier, J. Am. Chem. Soc., 1986, 108, 1089.
- 9 G. Wulff and H.-G. Poll, Makromol. Chem., 1987, 188, 741.
- 10 Shinbo et al. reported on the transport of several saccharides with phenylboronic acid across a liquid membrane: T. Shinbo, Maku (Membrane), 1988, 13, 153. However, a detailed examination on extraction species, stoichiometry and monolayer formations with lipophilic boronic acids has not been reported.
- 11 L. F. Fieser and M. Fieser, Reagents for Organic Synthesis, Wiley, New York, 1967, p. 833.
- 12 The details of the peak assignment will be reported in a full manuscript.
- 13 Kurihara *et al.* recently found that resorcinol-dodecanal cyclotetramer forms a stable monolayer at the air-water interface and recognizes sugar molecules: K. Kurihara, K. Ohto, Y. Tanaka, Y. Aoyama and T. Kunitake, J. Am. Chem. Soc., 1991, **113**, 444.